Skip to content Skip to navigation

Evaluating Climate Adaptation Options in African Agriculture, Stanford University (1/1/2011 - 10/31/2014)

FSE's previous Rockefeller project on "Prioritizing Investments in Food Security under a Changing Climate" pursued several research directions in an effort to better characterize the risks that climate change poses to agriculture in Africa. Among the lessons from the project were that climate change poses a substantial impediment to agricultural progress in Africa, that maize and Southern Africa are particularly vulnerable, and that inadequate soil moisture can substantially aggravate the effects of heat.

Although several questions remain on the question of risks and adaptation needs, we are gradually shifting our research program to evaluate priorities from the perspective of adaptation opportunities. What works and what doesn't? Or more specifically, what are the most effective ways to deal with the most serious threats that climate change poses? And given the type and scale of current efforts at adaptation, is Africa on a trajectory to effectively adapt to climate change?

A key lesson from prior work is that climate change is already underway and having non-trivial effects on agriculture, even today. From a research perspective, this increases the urgency of finding effective adaptations but also provides an opportunity to learn from ongoing attempts to adapt production systems.

The research project includes four main components:

Evaluating the adaptation potential for new crop varieties.
Evaluating the adaptation potential of small-scale irrigation.
Evaluating a suite of adaptation options in the Sahel.
Characterizing ongoing and proposed adaptation activities.

Location

Africa

For More Information:

Principal Investigator:

David Lobell

Current Research Interests: 
Research
I study the interactions between food production, food security, and the environment using a range of modern tools. Current work focuses on three main areas of research: how to effectively adapt agriculture to climate change, how to reduce yield gaps in major cropping regions, and how to quantify environmental consequences of biofuel and food crop production. A common theme is the use of large datasets to constrain and improve models that represent our understanding of how the world works. Prospective students interested in food security, climate change, and/or how to combine...
Read more